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Unsteady convection of an initially homogeneous fluid in a vertical slot is 
investigated theoretically in the limit of large Rayleigh and Prandtl/Schmidt 
numbcrs. The motion is driven by prescribed fluxes of heat or mass at  the vertical 
walls of the slot. The ‘heat-up’ problem is considered, i.e. the fluxes are specified to 
change instantaneously from zero to finite constant values. Perturbation methods 
are used to compute approximate solutions for the initial period and for the slow 
approach to the asymptotic state. Numerical solutions of the full problem are also 
given. It is shown that a significant stratification is set up after short time and that 
the system thereafter evolves as a strongly stratified fluid on a timescale that is 
proportional to Rui. During the latter part of the process, linear buoyancy layers of 
thickness -Ra-) appear on the vertical walls. On the horizontal walls, there are 
nonlinear boundary layers of thickness -Rapt, whose structure is akin to that of a 
Stewartson Ei layer. The theoretical predictions are found to be in good agreement 
with experimental results. 

1. Introduction 
Theoretical studies of unsteady two-dimensional thermal convection in enclosures 

where heat is supplied at one of the vertical walls and withdrawn a t  the other have 
mainly been concerned with cases where the vertical walls are perfect conductors. A 
typical problem is to calculate the response of an initially isothermal fluid to an 
instantaneous change of the temperature of the vertical boundaries. The nonlinear 
evolution to the steady state was analysed by order of magnitude estimates and 
computed numerically by Patterson & Imberger (1980). These authors found that 
the fluid approaches a steady state, which is characterized by boundary layers on the 
walls and a significant stratification of the density field outside the boundary layers. 
It was also shown that, under certain circumstances, internal waves appear and that 
the final steady state thus is approached by an oscillatory motion. These matters 
were further discussed by Patterson (1983) and investigated experimentally by Ivey 
(1984). The main features of the mechanism proposed by Patterson & Imberger 
(1980) for the evolution toward the steady state have been verified by recent 
accurate numerical simulations by Schladow (1990) and Fusegi, Hyun & Kuwahara 
(1991). For a detailed account of previous work on the subject, including 

t Present address : Department of Gasdynamics, Royal Institute of Technology, Stockholm, 
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experimental work, the reader is referred to the thorough review in Schladow’s 
paper. 

Some of the early studies of the steady state in a two-dimensional container with 
differentially heated walls should be mentioned. The first experiments with cavities 
having an aspect ratio of order unity were carried out by Eckert & Carlson (1961) 
whereas vertical slots were studied in the experimental work by Elder (1965). The 
first theoretical study of the steady state is the work by Batchelor (1954), whose 
results for the large-Rayleigh-number limit turned out to be a t  variance with the 
experiments by Eckert & Carlson (1961). Good agreement with observations were 
later obtained in the numerical studies by Elder (1966) and de Vahl Davis (1968). 
The asymptotic structure of the motion in vertical slots for large values of the 
Rayleigh number has been clarified in the work by Daniels (1987a, b) ,  which should 
be consulted for further references. 

A closely related class of problems was considered by Hyun (1984, 1985a), who 
computed, by using numerical methods, the response of an initially isothermal fluid 
in a thermally conducting cylindrical container due to a suddenly imposed constant 
temperature gradient on the vertical periphery of the container. In qualitative 
agreement with the results found by Patterson & Imberger (1980) but for a different 
geometry, Hyun found that internal waves appear during the approach to the steady 
state. Hyun also discussed the analogous behaviour of the heat-up of a stratified fluid 
and the spin-up of a homogeneous fluid. For instance, the internal waves in the heat- 
up case can be said to correspond to the inertial waves that appear during spin-up 
of a homogeneous fluid, see e.g. Greenspan (1968, p. 38). During nonlinear spin-up, 
a moving shear front separating regions of different vorticity appears (Greenspan 
1968, p. 4). In the problems considered by Hyun (1984, 1985a), the corresponding 
phenomenon is a temperature front separating regions in which there is a rather weak 
variation of the temperature field. 

Several authors have investigated linear problems in which the stratification is 
regarded as known. In  the two-dimensional case, this type of problem is formally 
completely analogous to the spin-up problem for a rotating homogeneous fluid, see 
e.g. Veronis (1967a, b ;  1970), Sakurai & Matsuda (1972) and Jischke 6 Doty (1975). 
(In the nonlinear cases discussed above, the analogy is only qualitative.) The 
physical reason for the similar behaviour of the fluid in the two cases is that the 
permanence of vortex lines in the spin-up case exerts control of the motion in the 
same way as the stiffening of isopycnic surfaces in the heat-up case. The non- 
oscillatory part of the motion in spin-up is controlled by Ekman boundary layers on 
walls that are not parallel with the axis of rotation. In heat-up, the corresponding 
control is exerted by the buoyancy layers that appear on boundaries that are not 
perpendicular to the density gradient in the interior of the cavity. 

It was shown by Walin (1971) that most of the mathematical difficulties due to 
nonlinear effects in the heat-up problem disappear if the walls of the container are 
suf$ciently poor conductors. For such cases, Walin was able to derive an approximate 
but simple linear parabolic equation for the evolution of the density field outside the 
boundary layers and gave analytic solutions for several cases. Once the solution of 
Walin’s equation for the stratification is known, all properties of the motion can be 
easily computed analytically to lowest order. Further use of this methodology has 
been made by Rahm & Walin (1979a, b) .  The first of these papers reports a very good 
agreement between theory and experiments. The same problem as the one considered 
by Patterson & Imberger (1980) but for a container with walls of finite conductivity 
has been studied by Rahm (1985), who used an ad hoc boundary-layer model to 
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compute the initial set-up of the stratification and Walin's model for the slow 
approach to the steady state. The heuristic method used by Rahm has been shown 
to be in acceptable agreement with a numerical solution of the complete problem 
(Hyun 1985b). The physical reason for the success of Walin's approach is that a fluid 
bounded by poorly conducting walls becomes more strongly stratified than a fluid 
bounded by efficiently conducting walls. The blocking effect of the strong 
stratification leads to linear motion in the vertical boundary layers, which makes the 
mathematical problem tractable by analytic methods. 

The heat-up of a fluid in a container with a prescribed heat flux on the walls, which 
is the subject of the present paper, does not appear to have been considered in the 
literature. The relevance of this class of problems for thermal engineering has been 
discussed by Kimura & Bejan (1984). For the steady case, Kimura & Bejan 
computed an approximate analytical solution for large Rayleigh numbers by using 
the Oseen-type method proposed by Gill (1966). Also, a numerical solution was 
computed, which compared well with the approximate analytical solution. One of the 
problems considered in the present paper is the unsteady version of the large- 
Prandtl-number limit of the problem considered by Kimura & Bejan (1984). 

Another incentive for the present study is need to understand effects of unsteady 
free convection at  large Rayleigh numbers in closed electrochemical systems. 
Important examples are the unsteady process of charging, or discharging, of 
batteries with a liquid electrolyte such as the lead acid cell, see e.g. Gu, Nguyen & 
White (1987). Other applications are electrolytic procedures for refining of metals 
(Hine 1985). If the electric current density is sufficiently.low compared to the limiting 
current density, which is often the case in applications, the electrode surfaces serve 
as spatially homogeneous sources or sinks of mass (Awakura, Ebata & Kondo 1979). 
As the Schmidt number in electrochemical systems is always large, the mathematical 
model for the heat-up of a fluid of large Prandtl number due to prescribed heat fluxes 
on the walls is formally the same as that for unsteady electrolysis of a binary 
electrolyte (Newman 1973). 

The paper is organized as follows. The mathematical problem is stated in $2. An 
approximate analysis of the motion for very small timewnd an estimate of the time 
needed to set up a sign' cant stratification are given in $3. In  $4, an approximate 
equation for the slow olution of the stratification is derived. In contrast to Walin's 

be solved numerically. In  order to derive appropriate boundary conditions for the 
model equation,' the horizontal boundary layers have to be considered. These 
boundary layers, which are discussed in Appendix A, turn out to be very similar to 
the nonlinear Stewartson Ei layers appearing in the theory of rotating flows. A brief 
description of the methodology used in a numerical solution of the complete problem 
is given in $5. Further details of the numerical method are given in Appendix B. 
Results are presented and discussed in $6, which also contains a comparison between 
theoretical predictions and experiments. The main conclusions from the present 
study are summarized in $7. 

equation, however,,, xt" e equation derived in the present work is nonlinear and has to 

2. Problem statement 
Consider a two-dimensional vertical slot of height 2L and width 2h. A Cartesian 

coordinate system (x , z )  will be used. The origin of the coordinate system is at the 
centre of the slot and the z-axis is parallel with the direction of gravity, see figure 1.  
The slot is filled with a Newtonian fluid. A t  the vertical walls x = + h  there are 
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k-+ 
FIQURE 1. Cavity and coordinate system. 

prescribed constant fluxes of heat or mass (due to  chemical reactions) of magnitude 
KA *. The horizontal walls a t  z = f L are assumed to be impenetrable by the flux of 
heat or mass. In what follows, the mathematical problem will be formulated as a heat 
transfer problem although, as was pointed out in the introduction, all results apply 
to the electrolysis of a binary electrolyte for constant electric current densities a t  the 
vertical walls. I n  the Boussinesq approximation, the system of equations to be solved 
for the velocity field u, the pressure field p and the temperature field T if the fluxes 
KA+ - into the slot are switched on at  time t = 0 and turned off at t = to are 

(1 a )  

V . v = O ,  T,+o.WT= K V T ,  ( I b ,  c )  

u = 0, x = f h ,  IzI d L ,  and 1x1 d h, z = f L  ( 2 4  

e,.VT = k A , [ H ( t ) - H ( t - t , ) ] ,  x = k h ,  1x1 d L (2 b)  

e,.VT = 0, 1x1 < h, z = &L.  (2c) 

p(ut + v*VV) = - Vp +,uV'V -pa( T -  To) g 

Here p is the density, ,u the dynamic viscosity, a the thermal expansion coefficient, 
T, a reference temperature, g the gravitational acceleration, K the thermal diffusivity 
and H the Heaviside step function. It should be noted that KA* are the fluxes into 
the fluid from the vertical surfaces a t  x = h and that the magnitudes of these fluxes 
need not be the same. In  thermal problems of the kind considered in this work there 
is usually no net flux into the cavity because otherwise the solution would, for large 
values of t o ,  eventually become physically unrealistic owing to  the occurrence of 
boiling and other phenomena not accounted for in the mathematical model. 
However, in mass transfer problems, the fluxes are often of different magnitudes also 
for cases with large values of to.  One important example is the lead acid battery. In 
what follows, the value of to will for simplicity be assumed to be sufficiently large for 
an asymptotic structure of the solution to develop. The solution will be computed for 
t < to. 

There are several possible ways of formulating the problem defined by (1 a)-(2c) 
in non-dimensional form. An obvious choice of temperature scale is Ah with A = 
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max {lA+l}.  In problems of the kind considered in this work, the height 2L of the slot is 
usually chosen as the lengthscale as this is the lengthscale over which the forcing is 
applied. However, the present problem is somewhat unusual in this respect. It will 
later be shown that, after a short initial period during which a stratification of the 
fluid is set-up, the motion is controlled by buoyancy layers at  the vertical walls in a 
similar way as a rotating fluid is controlled by Ekman layers, see e.g. Veronis (1970). 
The dynamics of the buoyancy layers depends on local conditions at the vertical 
walls and the distance between these. Thus, h is the relevant lengthscale in the 
present problem. Taking h 2 / ~  as the timescale and assuming that the dominant force 
balance is between viscous forces and buoyancy forces, one fmds the scales paAh3g/p 
and paAh2g for velocity and pressure, respectively. The non-dimensional version of 
(1 a)-(2 c )  then reads 

vt + Ra v - Vv = Pr( - V n  + V2u + Te,), ( 3 4  

W - V  = 0, T,+Rav-VT = V2T, ( 3 b ,  c) 

v = 0 ,  x = f l ,  IzI < Y and 1x1 < 1, z = k9, (4a) 

e,.VT = f A ,  H ( t ) ,  x = k 1, (zI < Y 
e,-VT = 0 ,  1x1 < 1, z = f Y ,  

where no separate notation has been introduced for the non-dimensional variables. 
In these equations, T is the non-dimensional temperature deviation, Y the aspect 
ratio of the cavity and A ,  = A + / A .  - The Rayleigh and Prandtl numbers are defined 
in the usual way, i.e. 

apgAh* , P r = - .  P R a = -  
P K  P K  

It should be noted that, under conditions such that the present scaling is relevant, 
a fluid particle will travel a non-dimensional distance of order Ra during a time 
interval of order unity. 

The problem defined by (3a)-(4c) will be investigated for large values of Ra, Pr and 
9. Although the full problem appears to be tractable only by using numerical 
methods, it will be shown in $53 and 4 that approximate solutions, which are valid 
outside the end regions, can be found for small and large values o f t .  

3. Approximate solution for small values oft 
During the very early stage of the heat-up process, it is reasonable, if Y B 1 and 

the Reynolds number Re = Ra/Pr is not too large, to assume that end effects are 
negligible except for some neighbourhood near the top and bottom of the slot. This 
motivates the following ansatz : 

v = w(x, t )  e,, p = P ( t )  z, T = T(x, t )  ( 5 )  

for the solution outside the end regions. Substitution of ( 5 )  into (3a-c) and 
accounting for the boundary conditions (4a, b)  yields 

vt = P r ( - P ( t ) + v , , + T ) ,  = T,., 

v( & 1, t )  = 0, Tx( f 1 , t )  = f A , H ( t ) ,  v ( z , O )  = 0, T(x,O) = 0.  

It should be noted that the Rayleigh number does not appear in the momentum 
22-2 
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equation under the conditions assumed. An exact solution of the problem for any 
value of Pr can be readily obtained in terms of Fourier series. The algebraic 
expressions are, however, a little complicated and are therefore not given here. A 
physically more transparent solution can be obtained if one makes use of the fact 
that, for large Prandtl numbers, viscous diffusion is very fast compared to thermal 
diffusion. This means that, for small values of t ,  the thermal layers are localized to 
the neighbourhood of the vertical walls. Moreover, the velocity field is quasi-steady 
because effects of viscous diffusion have had enough time to spread across the slot. 
In  mathematical terms, this is the limit Pr + co. One can then simply express the 
temperature and velocity fields in terms of the function 

~ ( x ,  t) = 2(t/n)te-z2/4t -xerfc (x/2tt), 
whereby one obtains 

T = A, F(1 -x, t)  +A- F(1 +x, t )  +O(e-'lt), (6a)  

2tg 
-7{A+( l  +x) + A_( 1 -x))+O(e-2/t). ( 6 b )  3nr 

For very small values oft  and outside the end regions, one thus finds that the velocity 
field in the region 1x1 < 1 - O(t t ) ,  i.e. outside the thermal layers, is the same as that 
of a homogeneous fluid in a slot, whose horizontal walls are fixed but whose vertical 
walls a t  x = f 1 are moving with the velocities 2A, t:/3&. The function P(t)  is 
determined from the condition that the net vertical volume flux in the slot is zero. 
The solutions (6a, b )  are compared with a numerical solution of the full problem in 
figure 2 (a-d).  This type of motion is very similar to the steady boundary-layer flow 
on a heated vertical wall in an isothermal fluid a t  large Rayleigh and Prandtl 
numbers investigated by, among others, Le F6vre (1957), Ostrach (1963) and Kuiken 
(1978). Corresponding unsteady cases have recently been investigated by Carey 
(1983) for a conducting wall and by Carey (1984) for a prescribed flux from the wall. 
For a more complete review of steady and unsteady boundary layer flows a t  large 
Rayleigh and Prandtl numbers, the reader is referred to the book by Gebhart et al. 
(1988, pp. 83-92 and 35e-371). 

A comment on the validity in time of the solution given by (6a, b )  may be in order. 
By assumption, the solution does not account for any effects of stratification. As an 
estimate of the time needed to set up a significant stratification, it is reasonable to 
choose the time of travel for a fluid particle that starts in the top region of the slot 
to reach the bottom region. Taking w - rnax {A,} ti according to ( 6 b ) ,  one finds that 
the non-dimensional time of travel is of order (Y /Ra) i .  For electrochemical cells, Y 
is typically of order lo2 whereas Ra is usually of order lo5 or more. Thus, the range 
of validity of the solution given by (6a, b )  can be expected to be restricted to very 
small times. It may be worth pointing out that the timescale ( Y / R a ) t  has essentially 
the same physical meaning as the timescale for the transient leading-edge effect for 
a suddenly heated vertical plate, see Gebhart et al. (1988, p. 355). 

A review of convective flows that are geometrically similar to the case discussed 
in this section can be found in Gebhart et al. (1988, pp. 350-354 and 727-733). 
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FIGURE 2. ( a ,  b )  The vertical velocity component w at z = 0 computed from formula (6b) (-) 
and from numerical solution of the full problem (0). t = 0.05, Ra = 36800, Pr = 2100, 9 = 20. 
(a )  A, = - A -  = 1 ,  ( b )  A, = A- = 1 .  (c, d )  The temperature T a t  z = 0 computed from formula (6a) 
(-) and from numerical solution of the full problem (0). t = 0.05, Ra = 36800, Pr = 2100, 
Y = 20. (c) A, = - A -  = 1, ( d )  A, = A- = 1. 

4. Approximate solution for large times 
Under the assumption that end effects are negligible, a matter that will be 

discussed in some detail later, one may assume that the solution for large values of 
t asymptotically approaches the following form : 

u = w(x)e,, e,.Vp = 0, T =  at+S'z+u(x); a,Yconst. (7 1 

This is a slight generalization of the ansatz made by Prandtl (1952, p. 422) in his 
model of mountain winds in stratified air, see also Gill (1966). 

There are two crucial assumptions embodied in (7).  First, it can on reasonable 
grounds be assumed that the velocity field approaches a steady state for large values 
oft .  As the container is slender, one may expect that this steady velocity field is 
approximately vertical and depends on x only. Secondly, the temperature field is 
assumed to  consist of three linearly superposed parts : a part at that grows linearly 
with time and appears only if there is a net flux of heat into the slot, a linear 
stratification S ' z  and a part that depends on x only. This assumption can be briefly 
justified as follows. If the total heat in the slot increases linearly with t ,  it is very 
likely that T will contain a term of the form at. Because hot (cold) fluid will 
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accumulate in the upper (lower) part of the slot, a stratification will appear. The most 
simple assumption, which will later be shown to lmd to a consistent solution, is to 
include a linear stratification in the ansatz. One must also account for the horizontal 
heat fluxes a t  the vertical walls. This is done by including the term u(z) in the 
expression for T. 

Some simplifications result if one introduces a redefined reduced pressure IZ = 
p-azt-@'z2. Substitution of (7 )  into (3a, 6 )  and the boundary conditions (4a)  gives 
the following problem : 

-l7,+w"+u = 0, a+S'Ra w = u", (8% b)  

w ( I f I l ) = O ,  u ' ( l ) = A + ,  u ' ( - l ) = - A - .  (9) 

As the pressure p ,  by assumption, is independent of x, ( 8 a )  shows that l7, is a 
constant. I n  order to compute W(X) and u(x) from these equations one must thus 
determine the three unknown constants 17,, a and S'. Integrating ( 8 b )  across the slot 
and noting that the vertical net volume flux is zero gives 

a = $(A++A-).  (10) 

Additional conditions are needed to determine S' and 17,. S' is determined by the fact 
that the slot is closed by thermally insulated walls a t  z = +9. If an asymptotic 
solution of the form (7) is approached for large t ,  one must require that the vertical 
net transport of heat a t  any value of z is zero in order to avoid a physically 
unreasonable accumulation of heat in the end regions (cf. Bejan 1979), i.e. 

( -q+RawT)dx = (-S'+Rawu)dx = 0. ( 1 1 4  S_, l1 
l7, is determined from the condition of global conservation of heat, i.e. 

r iU Y d z d x  = 4at9+ c' c" udzdx = t c" [u'(l)-u'(-l)]dz ( l i b )  
J-1 J-u J-1 J-u J -9 

which, in view of (9) and (lo), can be simplified to 

udzdx = 0. 

It turns out to be convenient to introduce the notation ,8 = ($S'Ra)i. For large values 
of /3, the boundary-layer solution of @a,  6 )  and (9) reads 

1 u - 2ip2w = nz + 1/B[A+ e-B(l+i) (1-S) + A- e-B(1+') (l+z) 

+ (A, + AP)/4p2 [i - ( 1  + i) {e-B(l+i) (1-z) + e-B(l+S (l+z) 11. (12) 

As expected, one finds that the motion takes place mainly in buoyancy layers at  the 
vertical walls. For A+ #= -A-  there is also a weak inviscid motion in the interior. 

The quantity S can now be determined from ( 1  1 a )  and (12). For large values of 
Ra, the result is approximately 

which implies that the thickness of the buoyancy layers p' - Ra-t. It should be 
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pointed out that the solution given by (12) and (13) is an exact solution of the 
Navier-Stokes equations. The boundary conditions are fulfilled with an error - e-2p, 
which, for large Ra, is very small. For A, = -A-  = 1,  one recovers the analytical 
solution obtained by Kimura & Bejan (1984) but here derived in perhaps a little more 
direct way. The expression for n,, which is readily calculated from (1 1 c) and (12), is 
not needed in what follows and is therefore not given. 

The next step is to assume that the pressure gradient and the stratification, which 
in the previous development were labelled n, and S', are slowly varying functions in 
space and time and to derive evolution equations for these quantities. Formula (13) 
shows that a new lengthscale N Raf appears in the z-direction. Guided by this result, 
it appears natural to use E = Ra-) as the small parameter in a perturbation scheme. 
One finds that a meaningful perturbation problem of multiple-scale type can be 
formulated if one introduces the slow variables 5 = EX and 7 = s2t and the ansatz (7) 
is generalized to 

(14) 

T = at - Y(c, 7 ; E) + e2t(Y,  r ; E )  + . . . , 
o = s6w(Y, y ; E) e, + s9u( 9, y ; E) e, + . . . , 

n, = s4Pz(Y;s)+. . . , 

where 7 = C2(1 fz), a is given by formula (10) and the functions Y, 4, w ,  u and Pz 
are assumed to be of order unity. The reason why a parametric dependence on E has 
been assumed for these quantities will be discussed in a moment. It should be noted 
that the functions 4,  w and u, which are assumed to have boundary-layer character, 
depend on Y(5, 7) but not explicitly on either t or 7. This means that, on the timescale 
considered, the boundary-layer fields are assumed to adjust instantaneously to the 
current value of 9. The corresponding (very accurate) approximation in spin-up 
problems is that, on the spin-up timescale for a homogeneous fluid, the Ekman layers 
adjust immediately to the geostrophic flow. An important consequence of the scaling 
assumed in (14) is that the order of magnitude of the vertical diffusive transport of 
heat in the interior is the same as that of the net vertical advective transport. It can 
be shown that the ansatz (14) leads to a consistent approximation outside the end 
regions if P r  9 Ra-). 

Approximate expressions for t and w (in terms of 9,) can be obtained from (12) by 
taking S' = E Y ~  and solving for u = c24 and w = e6w. Once w is known, u can be 
computed from the equation of continuity. Pz can be computed from (1  1 b ) .  It should 
be pointed out that this perturbation procedure does not give the same results as 
would have been obtained from a formal expansion of all variables in powers of e2. 
However, the results differ only in the O(e2) correction for the buoyancy layers. A 
straightforward but somewhat tedious analysis shows that this difference has no 
consequences for the results in what follows. The heuristic approach used in this work 
turns out to be algebraically much more simple than a formal expansion scheme. 

An equation for Y can be obtained by considering the heat balance in a slab 
between 5 and <+A[, i.e. 
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which is correct to O(e2). It should be noted that the terms wut are of order unity only 
in the buoyancy layers, which means that the term that is multiplied by e-2 in the 
right-hand side results in a term of order unity. Substitution of w and t ,  being 
computed in terms of Ye as outlined above, leads, after some algebra, in the limit 
A c e 0  to the following nonlinear parabolic equation for Y :  

Apart from the somewhat trivial solution Y = const. x c+const., which, as will be 
discussed below, is of some relevance in the present problem, no analytic solution of 
this equation has been found. However, the equation is much easier by far to solve 
numerically than the complete problem (3a)-(4c). As Y is computed numerically 
from (15), there is no reason to expand Y in powers of e2 and compute different 
terms separately. The next issue to be considered is the specification of boundary and 
initial conditions for 9. 

The boundary conditions at  < = +_ €2 = f &‘, say, follow from consideration of the 
horizontal boundary layers that appear at the top and bottom of the slot. (For the 
analysis in the rest of the paper, the order of magnitude of &‘ need not be specified.) 
Some details of these boundary layers are discussed in Appendix A. One finds that 
the boundary-layer thickness is e and the assumption of negligible end effects is thus 
valid as long as 9 % e = Ra-4. The mathematical structure of the boundary-layer 
problem is, as could be expected, quite similar to that for the nonlinear Stewartson 
,?& layer that appears during spin-up of a homogeneous fluid. It is shown in Appendix 
A that the motion in the horizontal boundary layers is independent of 7 to the order 
considered. This means that the conservation constraint expressed by (1 l),  and hence 
(13), must be used as the matching condition for Y to the solution in the horizontal 
boundary layers. The boundary conditions for the solution of (15) can thus be stated 
directly as 

In view of these boundary conditions, it  appears reasonable to infer, and this will be 
verified later, that the solution of (15) for large values of 7 asymptotically approaches 
the exact steady solution 

Y = Yo&. (17) 

The initial condition for the solution of (15) cannot be formulated by matching to 
the solution obtained in the previous section simply because there is no intermediate 
Emit in whi&-tbt-ws solutions are asymptotically the same. The physical reason for 
this is that the solution (6a, b )  does not account for any effects of stratification 
whereas, in the derivation of (15), such effects are assumed to control the motion. 
Somewhat fortunately, it turns out that Y can be computed quite accurately from 
(15) without detailed knowledge of the proper matching condition for small values of 
7. The reason is that the ‘diffusivity ’ in (15) is - 9’;; to lowest order in e2 for small 
values of YS. In  the problem under consideration the stratification YC starts to build 
up from zero, which means that the diffusivity will, for small values of 7, be very 
large. From a numerical point of view, this is a favourable situation as the solution 
will become essentially independent of the details of the initial conditions after a 
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5 

FIGURE 3. Ad hoc initial condition for equation (15). 

short time. Specifically, consider a Fourier representation of the (unknown) matching 
condition for small values of r. Equation (15) shows that a Fourier component of 
wavelength t will decay on a timescale of order tzYi, which means that small scale 
variations decay very rapidly. Guided by this observation, extensive numerical 
experiments were carried out with ad hoc initial conditions of the form (see figure 3) 

Y(C5,O) = 816, Id G X - 6 2 ,  (184 

Y(C,:,O) = YoJ-+(-@-6,)(61-%J, 0 G IX+Cl G 62, (18b)  

where 6, and 6, are small positive numbers. It was consistently found that the results 
were very insensitive to the particular choice of the numerical values of 6, and 6,. 
Also, continuous functions having the property (16) and similar shape to (18a, b )  
were tried with the same result. It should be pointed out that the details of the short 
initial period during which the stratification is set up are in most practical cases of 
significantly less interest than those of the long-time evolution of the system. 

Some comments on the physical mechanism that is responsible for the large 
diffusive effects for small values of r may be in order. It has already been pointed out 
that vertical transport of heat due to molecular diffusion and advection are both 
included in the derivation of (15). The advective transport, which takes place mainly 
in the buoyancy layers, is accounted for by the terms that contain inverse functional 
fractional powers of YC. If Yc is small, i.e. the stratification is weak, the motion in the 
buoyancy layers will be strong and the advective part of the transport is significantly 
stronger than that due to molecular diffusion. In (15), a strong advective transport 
then appears as a large diffusivity - 9::. 

Solutions of the approximate problem will be given in $6 after the method for 
numerical solution of the complete problem has been outlined. 
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5. Numerical method for the solution of the full problem 

(3a, b) and the boundary condition (4a)  read 
I n  terms of the stream function $ and the vorticity w = (e, x e,) - (V x v ) ,  equations 

Equations (19a, b) and ( 3 c )  were solved numerically with the boundary conditions 
(20a-c) and (4b, c) using a slightly modified version of a scheme developed by 
Johansson (1987). The scheme is second-order accurate in time and space. The 
convective and diffusive terms are approximated by the Leapfrog and Crank- 
Nicolson schemes respectively. For the details of the discretized equations and 
boundary conditions, see Appendix B. 

The discretized equations and boundary conditions define two linear systems of 
algebraic equations to be solved at each time level. The matrix elements of the 
systems are constants and are computed once and for all at the start of a 
computation. The system of equations is solved by using the Gauss-Seidel method 
with successive relaxation. 

The properties of the scheme have been analysed mathematically by Johansson 
(1987). Resolution of the vertical and horizontal boundary layers requires the spatial 
mesh (in the boundary layers) to  be of order Rap$ in the horizontal direction and Ra-4 
in the vertical direction. I n  the computations presented in this work, a Cartesian 
mesh, uniform in each coordinate direction, was chosen for reasons of simplicity and 
flexibility. For such a mesh, fulfilling the minimum space resolution requirements, it 
was shown by numerical experiments that the time step must be of order Ra-' for the 
scheme to be stable. This led to  quite time-consuming executions of the program. 

6. Discussion of results 
In this section some results are presented for the cases of odd and even forcing. In 

the odd case one has A, = -A- = - 1,  which corresponds to the thermal problem 
considered by Kimura & Bejan (1984) or an antisymmetric electrochemical system 
such as electrolysis of a binary electrolyte. The even case, in which A, = A- = 1, is an 
idealized system that has been chosen for its simplicity. Batteries with a liquid 
electrolyte are in general a compromise between the cases of odd and even forcing, 
which, of course cannot be superposed. In  all cases discussed in this section, the 
higher-order corrections in (15), (16) are deleted. 

The perturbation solution derived in $4, is, from a formal point of view, valid for 
E 6 1 and 7 = e2t = 0 ( 1 )  or larger, i.e. for large values oft. However, i t  is a fortunate 
circumstance that the perturbation solution turns out to be numerically quite 
accurate not only for values of E that are not extremely small but also for t - 1.  In 
order to illustrate these matters, some comparisons between perturbation solutions 
and numerical solutions of the full problem are shown in figure 4 (a-c). These graphs 
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FIGURE 4. Comparison between the function Y (-) computed from equation (15) and T for x = 
0 (0)  from the numerical solution of the full problem for: (a) 6 = 0.266, t = E - ~ T  = 0.4, Ra = 
147200, Pr = 2100, 9 = 16, A+ = - A -  = 1; ( b )  E = 0.311, t = E - ~ T  = 0.5, Ra = 36800, Pr = 2100, 
Y = 20, A+ = -A- = 1; (c) E = 0.493, t = E-% = 1.0, Ra = 575, Pr = 2100, Y = 16, A, = - A -  = 1. 
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- 4  -2 0 2 I 

FIQURE 5.  Evolution of the solution 9’(5, T )  of equation (15) towards the asymptotic state. 
E = 0.311, A+ = - A -  = 1. 

show Y(y, r )  and T(0, z, t)  in the case of odd forcing, where the latter is obtained from 
the numerical solution of the full problem, for three values of the Rayleigh number 
(147200, 36800, 575) for three different values of t (0.4, 0.5, 1). For each of the 
Rayleigh numbers, the respective values o f t  have been chosen as small as possible 
while retaining good agreement between Y( [ ,T)  and T(0,  z, t ) .  For all values of Ra, 
the agreement becomes better (worse) for larger (smaller) values of 7 .  Figure 4(c) 
shows that the approximate perturbation solution is quite accurate for B x 0.5, 
which is not extremely small. It is also obvious from figure 4(a-c) that the 
perturbation solution is a good approximation for t - 1 ,  which is outside its formal 
range of validity. The approach of Y to the steady-state solution given by (17) is 
shown in figure 5 .  Note that the solution obtained by solving (8a ,  b )  with the 
boundary conditions (9) is an exact solution of the Navier-Stokes equations for any 
Prandtl number. This implies that  the asymptotic solution for the evolution of the 
stratification Y will presumably work for any Prandtl number after a sufficiently 
long time. However, as the numerical solution of the full problem becomes a much 
more difficult issue for Pr - 1 or smaller, we have so far been unable to validate this 
assertion. 

The evolution of the system in the odd case is illustrated in figures 6(a-c) and 
7 (a-c), which show streamlines and isotherms, respectively, for representative values 
of 7.  It should be noted that the values of A@ are not the same in figures 6(a)-6(c). 
The velocity is largest during the initial phase when effects of blocking due to  
stratification are insignificant. Even though the value of T in figure 6(a) is only a 
small fraction of the diffusion time based on the distance between the vertical walls, 
end effects are obviously felt in the whole slot. This is consistent with the conclusion 
drawn in $3  that the ends of the slot will affect the motion after a very short time. 
I n  figures 6 ( b )  and 7 ( b ) ,  i t  can be seen that the vertical and horizontal boundary 
layers and the stratification are reasonably distinct for T = 0.3. Even though the 
system for this value of T is quite far from its asymptotic state, see figure 5 ,  the 
stratification is sufficiently strong for the perturbation theory given in $4 to give very 
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FIGURE 6. Streamlines for different values oft computed numerically from the full problem. Ra = 
36800, Pr = 2100, Y = 20, A, = - A -  = 1, 6 = 0.311. (a) t = E - ~ T  = 0.2, $,,, = -3.18 x 

= -3.18 x A$ = 3.7 x ( b )  t = E - ~ T  = 3, = -6.6 x = -3.18 x lo-', 
A$ = 2.6 x 10-5; (c) t = 6-27 = 30, = -2.65 x = -2.6 x lo-', A$ = 1.7 X 

FIQURE 7. Isotherms for different values oft computed numerically from the full problem. (a)  t = 
C - ~ T  = 0.2, T,, = - 0.987, T,,, = 0.400, AT = 0.154 ; ( b )  t = E - ~ T  = 3, T,,, = - 1.94, T,, = 1.26, 
AT = 0,356; (c) t = E - ~ T  = 30, T,,, = -2.19, T,, = 2.22, AT = 0.490. Ra, Pr, 9, A,, A- and 6 are 
the same as in figure 6. 

accurate results. For 7 > 3, the geometry of streamlines and isotherms changes very 
little. The level curves for $ and T shown in figures 6 ( c )  and 7(c)  are thus close to 
those of the asymptotic state. 

Comparisons between results obtained from perturbation theory and numerical 
solution of the full problem are shown in figure 8(u,  b ) .  These graphs show the 
vertical velocity component and the temperature field in the odd case a5 functions 
of x at the mid-height of the cavity for a small value of r. The agreement is good and 
becomes, as was pointed out before, even better for larger values of r. 

Streamlines and isotherms for three values of r for the case of even forcing are 
shown in figures 9 (u-c) and 10 (u-c). These results were obtained from the numerical 
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X 

-0.3 4 I I 

- 1.0 -0.5 0 0.5 1 .O 

x 
FIQURE 8. (a) The vertical velocity component w and ( b )  the temperature T a t  z = 0 computed from 
perturbation theory (-) and from numerical solution of the complete problem (a). t = 6% = 
0.5, e = 0.311, Ra, Pr, 9, A, and A- are the same as in figure 6. 

solution of the full problem. I n  figure 11, the vertical velocity component and the 
concentration fields computed from the perturbation theory are compared with the 
corresponding results from the numerical solution of tJhe full problem. The agreement 
is quite good but not as good as in the odd case, cf, figure 8(a ,  b) .  As the accuracy of 
the perturbation solution depends on the strength of the stratification, this means 
that the time needed to set up a significant stratification outside the buoyancy layers 
is somewhat larger in the even case. This effect can also be observed by comparing 
figure 6(b) with figure 9(b). The boundary-layer character of the motion is more 
pronounced in figure 6 ( b ) .  

It is noteworthy that the size of the end regions is very much smaller than in the 
case with isothermal vertical walls considered by Elder (1965). I n  the present case 
with prescribed fluxes at the vertical walls, the end regions are boundary layers of 
thickness - Rap;. I n  the case considered by Elder, where effects of stratification are 
weaker, the influence of the horizontal walls extend a distance - Ra along the slot 
(Daniels 1985) which can be considered as an ‘end region ’ only if 2 D Ra.  

Several authors, see e.g. Fusegi et al. (1991), have demonstrated that the approach 
to the asymptotic state in heat-up problems, under certain circumstances, is 
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FIGURE 9. Streamlines for different values oft computed numerically from the full problem. Ru = 
36800, Pr = 2100, Y = 20, A+ = A- = 1, E = 0.311. (a )  t = C-'T = 0.2, $,,,,, = 0, 
A$ = b$,,x; ( 6 )  t = E-'T = 3, $,,,, = 0, $,,, = 4.3 x A$ = i$,,,,,; (c) t = C'T = 30, $,,, = 0, 

= 1.54x 

*,,, = 1 . 7 9 ~  10-4, A$ = ;+,,,. 

FIGURE 10. Isotherms for different values of t  computed numerically from the full problem. (a) t 
= C'T = 0.2, T,,, = 0.1, T,,, = 0.65, AT = 0.0688; (b)  t = E-'T = 3, T,,, = 2.03, T,,, = 4.1, AT = 
0.259; (c) t = &-'T = 30, T,,, = 27.3, T,, = 3.18, AT = 0.563. Ra, Pr, 9, A+, A- and E are the same 
as in figure 9. 

oscillatory. These oscillations are internal waves. No internal waves were detected in 
the numerical computations reported on in the present work. The reason is simply 
that such waves are dissipated very rapidly by viscous forces. This matter may be 
worth a few comments. Assuming for the sake of simplicity that there are no effects 
of boundaries and taking the stratification to be given by (17), it  is a straightforward 
matter to compute the frequency of an internal wave from the linearized versions of 
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FIQURE 11.  (a )  The vertical velocity component w and ( b )  the temperature T at z = 0 computed 
from perturbation theory (-) and from numerical solution of the full problem (0). t = E - ~ T  = 
0.5, E = 0.311, A, = A- = 1. Ra, Pr, Y are the same as in figure 9. 

(3a-c). If the velocity, reduced pressure and temperature fields are represented by 
expressions of the form 

(v, n, T) = ( V ,  l7, T )  exp [i(wt+ k, x+ k, z ) ] ,  

where the quantities V ,  l7 and T are constants, one finds, under the assumption that 

Ra%YoC/Pr %- 1, 

the following approximate expression for the frequency : 

with k = (k;+k,2):. The first term in (21) is the Brunt-Vaisala frequency and the 
second term is the decay rate. Consequently, internal waves having wavelengths of 
the same order of magnitude as the distance between the vertical walls can be 
expected to have a decay rate that is proportional to the Prandtl number, which in 
the present work is assumed to be large. It should be remembered that the 
assumption that effects of boundaries are negligible makes (21) correct only as an 
order of magnitude estimate. 

Comparisons between predictions of the perturbation theory developed in the 

w = f { k: Pr R a ~ y 6 , / k 2 } ~  + +ik2Pr, (21) 
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FIGURE 12. Comparison of 20 at cavity mid-height ( z  = 0) from the experiments by Karlsson et al. 
in a copper cell and the asymptotic theory (-); Ra = 308000. (a) t = 15 min (7 = 0.045), ( b )  t = 
30 min (7 = 0.09), (c) t = 60 min (7 = 0.18). 

x (mm) 

present work and experimental results are available in the literature. The 
development in time of the vertical velocity field in the electrochemical system 
Cu(s)/CuSO,(aq)/Cu(s) has been measured by Karlsson, Alavyoon & Eklund (1990). 
Figure 12(a-c), which is taken from that work, shows that the agreement between 
theory and experiment is good. The evolution of the vertical variation of the 
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FIGURE 13. Comparison of the stratification from the experiments by Eklund et al. and the 
asymptotic theory (-), Ra = 308000. (a) t = 15 min (T = 0.045), ( b )  t = 30 min (T = 0.09), (c) 
t = 60 min (T = 0.18). 

concentration field in the mid-section of the electrochemical cell, i.e. c(0, z, t ) ,  has 
been measured by Eklund et al. (1991). Owing to the boundary-layer character of 
the concentration field, c(0, z ,  t )  z 9 ( < , 7 )  to a high degree of accuracy outside the 
horizontal boundary layers. Figure 13 (a-c), which is taken from the paper by Eklund 
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et al. (1991), shows that the theoretical results are in good agreement with 
experiments for the concentration field also. The perturbation theory is thus 
validated by comparisons with both experiments and numerical solutions of the full 
problem. 

7. Summary of results and methodology 

The unsteady convective motion of an initially homogeneous fluid in a vertical slot 
due to suddenly imposed fluxes of heat (or mass) at the vertical walls of the slot has 
been considered for large values of the Rayleigh and Prandtl/Schmidt numbers. It 
has been shown that effects of stratification become of importance after a time period 
of order (L?/Ra)fh2/K, where 9 and h are the aspect ratio and the half-width of the 
slot, respectively, Ra the Rayleigh number and K the heat (or mass) diffusivity. The 
initial part of the ‘heat-up’ process, is, in practical cases, usually very short. 

After the stratification has been established, the velocity and concentration fields 
evolve on the slow timescale h2/Ruh toward an asymptotic state, in which the 
density field outside the boundary layers has a linear variation in the vertical 
direction. During this phase of the process, the motion is strongly blocked by the 
stratification. There are linear buoyancy layers of thickness R a ~ h  on the vertical 
walls and nonlinear boundary layers of thickness Radh on the horizontal walls. The 
latter layers are quite similar to the nonlinear Stewartson & layer that appears on 
vertical walls during the spin-up of a homogeneous fluid. In analogy with the spin- 
up problem, there is presumably also a thinner boundary layer of thickness Ra-hh 
nested within the aforementioned horizontal layer but this matter has not been 
investigated in this work. Outside the boundary layers, there is a weak inviscid 
motion, whose strength compared to that of the motion in the buoyancy layers is of 
order Ra-f . 

The asymptotic structure of the motion for large Rayleigh and Prandtl/Schmidt 
numbers was investigated by using perturbation methods. An approximate analytic 
solution was computed for the initial phase before the stratification is established. 
For the slow approach to the asymptotic state, an approximate partial differential 
equation for the evolution of the density field outside the boundary layers was 
derived. The boundary conditions for this equation could be determined from a 
simple analysis of the problem for the motion in the horizontal boundary layers. The 
formulation of the initial condition turned out to be much more difficult because 
there is no region of overlap with the solution for short times. Therefore, the initial 
condition had to be formulated on an ad hoc basis. Very fortunately, the solution 
turned out to depend surprisingly weakly on the details of the initial condition, even 
for small times referred to the long timescale h2/Rah. Once the interior density field 
has been computed numerically, all quantities outside the horizontal boundary 
layers can be simply calculated analytically. 

The complete problem was solved by numerical methods. The results were found 
to be in good agreement with those obtained from perturbation theory. It turned out 
that the numerical solution of the complete problem was quite time-consuming. The 
perturbation approach, which requires considerably less computational efforts, may 
thus be useful in applications. 

Theoretical predictions from the perturbation theory developed in the present 
work were found to be in very good agreement with measurements of the velocity 
field by Karlsson et al. (1990) and the concentration field by Eklund et al. (1991) in 
an electrochemical cell. 
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Appendix A 
In  this Appendix, some properties of the boundary layers on the horizontal walls 

are discussed and a possible solution procedure for the mathematical problem is 
outlined. The purpose of the outline is to demonstrate that the problem for the 
horizontal boundary layers appears to be well posed, which, in addition to the results 
derived in $4, is a quite strong indication that the solution of the complete problem 
in the limit of large Prandtl and Rayleigh numbers indeed has an asymptotic 
structure of the assumed form. 

I n  the boundary-layer problem for thc motion near the bottom of the slot, a 
stretched coordinate 6 = ~ ~ ( 9  + z )  is defined and the dependent variables are 
represented as follows : 

] (A1)  
T = d-Y(  - X )  + e 2 t + .  . . , w = s * w + .  . . , u = e 7 u + .  . . , 
p = €(Y( -X)- -at )  6 + € 3 7 4  + . . . . 

Substitution of (A 1)  into (3a-c) leads to the problem 

0 = -+,-t, 0 = -+ x ,  wt ,+utx = t,,, w,+u, = 0. (A 2 a d )  

To lowest order, the boundary layer is thus quasi-steady and hydrostatic. It follows 
from (A 2a, b )  that t does not depend on x. Hence, the second term on the left-hand 
side of (A 2c) drops out and it follows that w is also independent of x. One then finds 
from (A 2 d )  that u is linear in x. I n  principle, u can thus be computed in terms of 
t from matching to the solutions in the buoyancy-layer extensions in the regions I€J - 1,Iql = le-2(1 +x)l - 1. These regions will be briefly discussed below. If tl is known, 
u can be computed by integration of (A2d).  The constant of integration is 
determined by matching to the interior part of the vertical velocity tu. Once u is 
known in terms of t, (A 2c) becomes a nonlinear second-order ordinary differential 
equation for t .  It seems very reasonable to impose the following boundary and 
matching conditions for the solution of this equation : 

t ,  = 0, 6 = 0 ;  limb = -Yo5[. (A 3a, b )  
5- 00 

The formally incorrect notation for the limit in (A 3 b )  is here used as an abbreviation 
for the algebraically somewhat complicated intermediate limit process described, for 
example, in the book by Cole (1968, p. 9). Using the definition of 6 in terms of 6, one 
finds that T, for large values of 6, behaves as 

which is the inner behaviour of the outer solution. The matching can thus, in 
principle, be carried out to lowest order. The mathematical structure of the problem 
defined by (A 2 4  and (A 3a, b )  is very similar to that of the problem for nonlinear 
Stewartson Ei layers in the theory of rotating fluids (Bennets & Hocking 1973 ; Smith 
1981). 

T = d-Y(  -%)-Yo&% +<)+. . . , 
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In the buoyancy-layer extensions, the dependent variables are expressed as 

T =  a t - Y ( - ~ ) + e 2 t B + . . . ,  W = € 6 W , + . . . ,  U = t " t l B + . . . ,  

p = e ( 9 ( - 2 q - a t ) ~ + e 3 j h i g +  ..., 
which leads to the following system of equations: 

Equation (A 5 b )  implies that #, = jh. One then finds from (A 2a)  that (A 5a)  can be 
written 

From (A 5 e )  one can, in principle, compute wB(q, 6) in terms of t, and t. The two 
(A 5 e )  w B , , - t B + k  = 0. 

arbitrary functions of 6 that appear as constants of integration are determined from 
the boundary conditions 

(A 6) U B ( 0 ,  6) = w B (  3 6) = 0. 
One can thereafter compute t l , (q,E)  by solving (A 5 d )  subject to the boundary 
condition 

which means that tl can be computed by matching to tl,. The coefficients w, and U, 
in (A 5 c )  are now, in principle, known in terms of t, and t. This equation can thus 
be written as an integro-differential equation of parabolic type for t B ( q ,  6). It seems 
reasonable to infer that this equation can be solved subject to the boundary and 
matching conditions 

t B , ( O , [ )  = A,, lim 4, = t, lim 4, = -YOs6+t(q). (A 8a-c) 

The solution of the perturbation problem outlined above would require extensive 
and certainly quite difficult numerical computations. 

It is readily shown that the neglected terms t, and t,, in (A 2c)  and (A 5 c )  are of 
order e4 and 8, respectively, compared with the terms retained. It is therefore 
consistent to impose the boundary condition (13) for the solution of (15) even if the 
term of order e2 on the right-hand side of that equation is kept. 

There are still boundary conditions that are not corrected by the solution of the 
problem discussed above. In analogy with the spin-up problem, there is very likely 
a thinner layer of thickness d, which would correspond to the Stewartson I$ layer, 
as well as e2 x e2 corner regions. The mathematical problems to be solved in these 
regions are not discussed in this work. 

(A 7) UB(O36) = O ,  

<!Tsd , k Z d  

Appendix B 

(20a-c) and ( 4 b ,  c )  read 
The discretized version of the equations and the boundary conditions (19a, b) ,  ( 3 c ) ,  
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$i,5 = 0, i = O , l , M , M + l , O  < j  < N +  1, j = O,l,N,N+l,O < i < M = l ;  (B 4) 

Here D,,,, are the discretized centred derivative operators in the x- and z-directions, 
respectively. Vi is the discretized Laplace operator. M and N are the number of grid 
points in the x- and z-directions. Equations (B l),  (B 2), (B 4) and (B 3), (B 5)-(B 8) 
define two linear systems of algebraic equations with constant coefficient matrices. 
Equation (B 1) lacks boundary conditions and therefore (B 2) is used for defining the 
values of q5  in terms of $i,5 on the boundaries. 
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